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ABSTRACT

Inviscid, supersonic conical flows past bodies whose cross-
section deviates slightly from that of a right circular cone are studied
by means of a perturbation technique. Writing the equation for the body

cos ng + 6 sin my, where 8, 8 ,<< 8 _ , we
b Ty B %% %

have obtained analytical results with the assumption of a weak polar cross-

as op () = eob +310

flow ( eg. V,- ée / a << 1 ). The effects of small angles of attack and
yaw are included. Using the hypersonic small disturbances theory approxi- .f

mations, we have developed explicit results for the flow field velocity

components, pressure, entropy, and shock shape for cases n, m=1, 2, 3, 4.

Comparisons of theory with experiment for n = 1, 2 are favorable.

The results obtained also agree with linearized theory when M]e -0

and Newtonian theory when M1e + =, The streamsurfaces of the velocity ]

mh

field are calculated and possible waverider geometries that can be de-

veloped therefrom are discussed.
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SECTION 1
INTRODUCTION

Conical bodies refer to shapes that are generated by a semi-
infinite 1ine, one end of which is fixed at a point called the vertex of
the body. By moving any other point on the line through a closed
curve, a conical body is generated. A right circular cone is the most

common example of a conical body. Many practically important 1ifting

bodies can be approximated as conical or nearly conical, and thus the
study of flows past conical shapes is of interest.

Provided the bow shock wave is attached, the flowfield associ-
atgd with a uniform supersonic flow past a conical body is also conical.
That is, the flowfield is independent of distance along a ray through
the vertex. Conical flows have been extremely valuable as building
blocks for more complex situations and as guides to the nature of super-
sonic flow. They provide two of the more important exact solutions for
inviscid supersonic flow past bodies (e.g. the wedge and right circular
! cone) .

In this report we wish to study supersonic flow past conical
bodies whose cross-sections deviate slightly from that of a right cir-

cular cone. In this way, we can study the effects of angle of attack,

elliptic eccentricity, and so on. Using a regular perturbation scheme

as orginally suggested by Ferri, Ness, and Kaplita (1) and later used
. by Chapkis (2), we seek solutions that differ slightly from a known

nonlinear flowfield -- here the supersonic flow past a right

circular cone, Rather than solve the perturbation problem
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numerically, as did Ferri et al., we shall use an approximate,

albeit quite accurate, analytical solution for the right circular cone
flow that allows the perturbation problem to be solved analytically

in closed form. In contrast to Chapkis' solution, the approximate
circular cone solution that is employed herein is considerably more
accurate. In this way the accuracy and utility of the results are
enhanced.

Here we consider bodies which deviate from a right circular
cone by amounts proportional to cos n¢ and sin m¢. The cone at small
angles of attack corresponds to n = 1 and the slightly elliptic cone
corresponds to n = 2. Superposition of the results for various m, n
allow a much larger class of body shape to be studied. In this way,

the range of conical bodies for which approximate solutions are avail-

able has been generalized considerably.

In what follows, we first derive the governing equations and
boundary conditions for these conical flows. Using the "linearized
characteristics method" of Ferri et al (1), we then derive the small
disturbance equations and the simplified form of the boundary conditions.
A "weak polar crossflow" approximate solution to these equations is
then obtained. Further results are found using the hypersonic small
disturbances approximation. Comparisons of these results with experiment
is then given. The streamsurfaces and possible waverider geometries

that derive from these streamsurfaces are then discussed. The report

ends with some concluding remarks.
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SECTION 2

GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

The equations experssing conservation of mass, Newton's
second law, and the first law of thermodynamics ( in both entropy and

total enthalpy form ) for an inviscid, adiabatic, steady flow are

v . (pv) =0 (1)
oV . 9 = -gp (2)
V.vs=0 (3)
Vev(h+Vv¥2) = g (4)

We shall take the state equations to be of the form

p=p (es) (5)
h=nh (p,o) (6)

Equation (4) can be integrated to give the result that the total enthalpy
h + V2 / 2 is constant along streamlines. As we assume the freestream
conditions to be uniform, the total enthalpy is constant everywhere.

If we eliminate the pressure and density from the continuity and momentum

equations, we obtain

Lt e, e N TS TS

v -
=+ (V7 V) (7)

pre
0=V-V-

[+




h

2 f2) 5

13 atoipl 3P e, 1 .9V '

p( o ) vs e (-7 ) + : 5 ) + 2 V.vV 8)
p P ap P

It is convenient to adopt a spherical polar coordinate system
(r, 8, ¢) aligned with tha basic circular cone with origin at the cone
vertex (s2¢ Figure 1). In this case, Eqs. (4), (7), and (8) become,

assuming conical flow (e.g. 3/ar = 0),

al = 151 (v 2- 2. v2 - wd) (9)
M
2 2 2
0= u(2- !——1§E— ) + v cote + (1 - lg) %% (10)
a a
217 - e el O N By My
a2 siné 3¢ 32 sine 3¢ 36
iy W w2 2 (11)
Gxwedteee 7Y ¢
8C 38 ... B B W B . o cote (12)
YR 36 30 30 sine 3
a2 3s du v s OW i
W -3? = -u—ﬁ-v—a—¢+vs1ne—ﬁ+ uw siné
+ v wcos 8 (13)

Here VM is the maximum attainable velocity for the given

total enthalpy ho’ VM = /2 ho . Equations (9) - (13) also assume a

perfect gas model for which Eqs. (5) and (6) reduce to

4

I EEIm———.




FIGURE 1. SPHERICAL POLAR COORDINATE SYSTEM
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p=py R} exp( =) (14)
1 v
h = §%T' % (15)

The subscript 1 refers to a reference state taken here to be the undis-
turbed freestream conditions.

The boundary conditions for this problem include the shock
jump relations and the condition of zero mass flux through the body --

the so-called tangency condition. The shock jump conditions can be

written
o A - #
P ~lg=pa¥o-n, =m (16)
m V] *Ppya, = om Vz + Py N, (17)
V]Z V22
m(h]+—2— =m(h2+—2—) (18)

Here the subscripts 1 and 2 refer to conditions upstream and downstream
of the shock wave and ﬁs is the unit normal to the shock (see Figure 2).
The freestream conditions are taken to be constant with velocity V1 at

angle of attack a and angle of yaw t relative to the z - axis,

Y

(1 + tant o + tan2 T )]/2

<t
n

(eZ + tana e, (19)

4 X
tan t ey)
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The tangency condition on the body can be written

| ﬁb =0 on body (20)

Here ﬁb is the unit normal to the body.
The component of the freestream Mach number normal to the

shock wave, M] , is given by
n
Vl

M=-ﬁ';l;n=—
L5 1 S 1 a (21)

For a calorically perfect gas, the shock jump conditions can be re-

written
2
5 M
v] . nS - 2 ( v+ u ]n (22)
V, - n B et M]n2 +2
& e "
V] Xm, = V2 X ng (23)
B T R (24)
1 L 1n
Sul < (vel]  Teel) My B 42
AS T 1y L
c In v+ HoGw (y+T) M, 2 ) (25)
v ]n

For conical flows, we can take the equations describing the

shock wave and body as
shock wave: g=d, (¢ (26)
body: o =0y (¢) (27)

In the direct problem that we are considering, eb( ¢) is given and

1
I8 (¢) 1is to be determined. We introduce the angles g and &§so that

i o - -ﬂ




ng =cos e, -sing e, (28)
n, = cos $ eq - sin 6 e, (29)
where
' 1 des 1 deb
tan 6 = g 8, do tah = = 6y 09 (30)

The expression for the normal component of the freestream Mach number
can then be rewritten (31)
&

M = - x [cosg (-sine + tana cos® cos¢
Tn o+ tan%a +tan°t) /2

+ tant cose sing )
- sing(~tana sin¢ + tant cos¢ ) ]

Equations (22) and (23) can be solved for the three velocity components

downstream of the shock wave in the following form

u
2 1 ;
- = [cose + tana sine cos¢
Vi (1 + tana + tanzr ) 172
+ tant sind siny ] (32)
(33)
2 1 .
T = 5 5 1/Zl_'coss {cosg (-sine + tana coS8 cOS¢
1 (1 + tan"a + tant )

+ tant cose sing ) -sing

«(-tana sing + tant cos¢ )}
v=-1

| 2
I CTon D
n

- sing {- cosg (-tana sing + tant cos¢ )
- sing (-sine + tana cos® cos¢

+ tant cose sing )}]




w

2 1

B 2

V1 (1 + tan

a + tanzt )1

/2[ - sing { cosB ( - sine

+ tan o COS @ cOS ¢ + tan T cos & sin o)

sin 8 (-tan a

sin ¢ + tan t cos ¢ )}

It

cos B8 {~-cos B

(-tan « sin ¢ + tan v cos ¢ )

-sin 8 (-sin @ +tan a cos & cos ¢ *+ tan = cos o sin ¢)}]  (34)

Here 6 is to be evaluated at 8¢ (¢). The tangency condition on the

body becomes

0 = v, cos § - vy sin § (35)

with e evaluated at 6, (¢

Equations (10) -

}-

(13) give four nonlinear partial differential

equations for the four unknowns u, V, W, and s. Equations (25) and (32) -

(35) give five boundary conditions. Thus the unknown shock shape 6. (¢)

can also be determined.

pressure coefficient, Cp
b

¢ _p'p1
p T 2
¥ "N

Once the velocity and entropy are known, the

(36)

sl "N ;..'-i



po—

can be determined from

2 2

A Wi s M ikt P oo

o g M Y- =%
Cp -;—2-{(\—’—2-—_——2) exp(-—T ) -1} (37)
Y v
1 M 1
It is convenient to introduce the following normalized
variables,
-
- S I - Patet ST VNG
1" k" e c R v
Dropping the bars for convenience, we can then rewrite Eqs. (10) -
(13) as,
2 2 2
= i & - LI
C=u (2 az ) + v cote + (1 2) s (1 a2)
1 W W 1 v
“Se w7 (i ot e ‘39)
- w__ou _ 2 2
0=V s *sine 3¢V ~ ¥ (40)
a2 3S Ju W L _ W 2
et e ST LR a¢ + uv - w° cote (a1)
a? 38 oLy | 3,y gine My yw sinet w cose (42)
y(y=-1) 3¢ 3 % 36

where a2 is given by

i

The boundary conditions on the velocity are still given in Egs.

with the left-hand-side of Egs.

2

— (a3)
(v-1) 2

c oWy = 1

(32)-(35)
(32) - (34) replaced by u, v, and w,

1




respectively. The boundary condition on the entropy s becomes
2y M 2 ) (e m 22y

s= 1In {( 24,; ) ( TY'H) ;+2 ) } at 8 = eS (44)
1

n
while the expression for the pressure coefficient Cp becomes

2_V2 Y

o ) 7:‘rexp(-y%])-n (45)

-2
P YM]Z VMZ-I

12




SECTION 3

LINEARIZATION ABOUT CIRCULAR CONE AT ZERQ ANGLES OF ATTACK AND YAW.

Let us assume that the flowfield is conical and deviates slightly
from that for flow past a right circular cone at zero angles of attack
and yaw (see Figure 3). Furthermore, let us expand the flowfield variables

in a Fourier series in the azimuthal angle ¢.

u = uy +r; enb Up (8) cosn ¢ + Z emb Up (8) sin mg

m=1

o0

vV=yv +Ze v (e)cosn¢+ie v_ (8) sin m¢
© =AM " ml M "

W= Z 6. w_(8) n sin n¢- i 6 w_ (6) mcos mo
n=1 " " mi M ™
(46)
sag @ B G () cosn ¢ + Z By S () sin mo
n=1 b m=1 b
6. = 6_ + ) cosn¢+Ze sinm ¢
’ % r; Ny m1 Mg

By = © +i ®n cos¢+i 8 _ sin n¢

% n=1 b m=1 M

The subscript naught refers to the basic flow past a right circular cone

at zero angles of attack and yaw. In order that the flowfield deviate

slightly from this basic flow, the Fourier coefficients Gn and em (and
b b
13
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FIGURE 3. SPHERICAL PROJECTION OF SHOCK AND BODY




therefore 6, and O ) must be small compared to 6 (and 6_ ),
Ob [0}

S S
0 6
nc mc
TRm—— 9 e—- << 1
Ob Ob
Gns Sms
_— z — << 1
e0 e0
S S

We shall assume this is true so that terms of second order in e“b and

n
S

and yaw t are similarly small compared to 8o, -

(47)

8 are negligble. For consistency, we also assume the angles of attack a

Substituting these expansions into the governing equations and

boundary condition, and equating coefficients of powers of 8 s On to

zero, we obtain a hierarchy of problems, the first being that for flow

past a right circular cone at zero angles of attack and yaw.

governing equations for that problem are

dv0 Yo 2
2U0+C0t9V°+T§—=(3-0-)
du
- 0
0=Vods -
a 2 ds du
0 __O.=_u —_—
y(y-~1 de o de
with
2 o =l 72
% =7 Uy

The associated boundary conditions are

pel, 7
s
15

(48)

(49)

(50)

(51)

e e S S AP
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u = cos 8
vV, - cos 6
v, o= - )
) v+l sin 8 (52)
gl 2 2 2
2y M1 sin"8-y+1 (y-])M.I sin“g+2 Y
g = ol = )( ~ T )
6 =86 -
%
¥, 0 (53)
The equations for the first order (e.g. of order & , 8, )
b b
problem are
dv nZ W,
2u, +cotov, *3% Tt sine
v 2 a dv a_ dv
54)
(Y [y -2y Set-p L 28 (
ao n (o] ao de o de
dlnYy VO Uy
*2 V) T ]+(3_) [ 27 vy ]
0 0
du du
= — i
9 Vo @ "Vn T 2 Yo n (55)
aoz dsn dun
@ % e ®w ) L
a 2 dwn )
o 0 = u u +v_ Vv +v_ sing (57
ST5-17 °n on ‘o'n o de
[ 4
* W, (uo sine + v, cos® ) |
i
i
a u. u v, U
i o=tsnl (2 Ry 8 T (58)
0 3, 3% 3%

16




The associated boundary conditions are

9 =0
L
duo _ enS
u, = (-sin & - 3 * > S sin 9) 5;—
b
20002
dv 2 - (y-1) My~ sin
v.=]-=2-v_ cote ]2 s (59)
p de e 2 + (y-1) M{" sino
e"s
ofl - X & )1 =
Tn 8
My
8
n
2 1 _5
W, = (1- ) - A6
L ( vy+1 Mlzsinze In enb
: 2
ds° 4 vy(y-1) cote (M12 s1nze-1)
s = |- ¢ :
n ( T sinZe- v+1) ((y-1) M° sine +2)
e"s
o (1-a 61n) —
b
9 = e°b
= (60)
Y 2 Uo

Here A is (tana ) / 615 or (tant ) / 915 for cases involving angle
of attack (n=1) or yaw (m=1). 84, is the Kronecker delta symbol.
Equations (55) and (56) can be used to show that Sn is constant and that
q equals dun / d®. The result that Sh is constant is not valid on the
body surface. The body surface is a streamsurface and the entropy must
be constant there. Our perturbation approach gives s = So + 1 Sp cosn ¢

* 3 Sm sin m ¢ which is not constant on the body surface. As a con-

sequence there is a thin layer near the body surface, the so-called :




vortical layer, where the results of our regular perturbation scheme
are not valid. Munson (5), Melnik (6), and others have studied con-
ditions in the vortical layer and have shown that the results obtained
for the pressure and azimuthal velocity by means of the regular per-
turbation approach are valid in the vortical layer while the results
for the radial and polar velocities and entropy are not valid there.
The methods of singular perturbation theory allow one to correct the
inadequacies of the regular perturbation approach near the body and
thereby obtain a uniformly valid solution. We shall not attempt to
deal with the vortical layer as it will not affect the results of
interest to us.

Equation (57) can now be rewritten

- a°2 s = d (u +w_sin o) + EQ (u. +w_sino) (61)
Y(y-1) Vo N de ‘“n n Vo ' N n?
which can be formally integrated to give
1
S 1/2
. = n . Y‘I
| U, +w, sin e = - o s (-vo sing) a,
2y-3 =
8 a y-1
" Jo 7 d8
Oy Yy (-v0 sin 8)
= «F, i8]

noting that (un W sing) vanishes at o = 8,y - Eliminating v, and w.
s
from Eq. (54), we obtain

18




du
+ cot 6 —2 + uy (2-n2 csc2 8)
de

g 2
)

v_u_ du
+ 2 Efl-il L

Vv
——— [U e
o % de a n

with boundary conditions

du° ‘ enS
== %-'*‘ sin 6 (1-)\ 51n)]§n—
b

2. 2
dv0 2-(y-1)M1 sin“e

= - [=— + v_ cot o( )
do o 2 + (y-1)M,%sin%

nS
“(1-x &) 5=
My

=2 Uy

Once Up is determined, " follows from Eq. (62) and ¥ follows from

dun
Vn =a‘e—— (66)

The disturbance sound speed a  can be evaluated from Eq. (58). The
constant s is given by Eg. (59).
The pressure coefficient Cp can also be expressed as a Fourier

series expansion. Substituting for V and s in Eq. (45), we obtain

o

C.=2¢C_ » 8 C_ (8) cos no + 2: 2 i
p ™ Cp, 2;] n Cp, ) ) ] emb o (6) sinm ¢  (67)
= m:
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where
2 2
V), -u_"-v -s
_ M "0 ‘o 1 0
C = { Y —
B aZ-1 e (68)
1 M
2 Sn 2y Y un ¥ n
C = -(c + ) { — + } (59)
Pn Po YM.l2 L VMZ - uo2 -vo2

20
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SECTION 4

WEAK POLAR CROSSFLOW APPROXIMATION

Here we wish to exploit an approximation introduced earlier by

Rasmussen (7) that allows closed-form analytical results to be obtained.

These approximate results are surprisingly accurate over a wide range
of conditions and are particularly simple to use. The approximation
we shall invoke is the "weak polar crossflow approximation" corres-
ponding to the limit vo/a0 + 0. The term (vo/ao)2 varies from its
maximum value at the shock to zero on the body,

: 2o+ 2

0% (D = (70)
3 ao shock 2y M]2 sinze -y+ 1

7
v 2 ¥ 2 (y-1) M] sin

For M, sin 8 large, the upper bound to (vo/ao)2 becomes (y-1) / 2y
(=1/7 if y = 1.4). As we shall see, ignoring terms of order vo/ao
in the governing equations reduces the equations to forms that can be
solved analytically in terms of known functions.

Ignoring terms of order (vo/ao)2 in Eq. (48), we can reduce
the equations governing flow past a right circular cone at zero angles

of attack and yaw, Eqs. (48) - (51), to

2

d Uy duo
‘—1—2—+coted—— +2uo=0 (71)
(5] (5]
du
v°=d—92 (72)
ao2= l%l (VMZ _u°2 A Voz) (73)

21
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B e

ZyMlzsin2 eo -y+1  (y-1) M125in2 8y 2 Y
s, = 1n {( =—)( g | (74)
(y+1) (y+1)M] sin“e,
s
with boundary conditions
e=eos: u°=cose
: (75)
de v+l sing
du0
8 = aob: = - ¢ (76)

Equation (71) is Legendre's equation whose solution can be written
uy = Ay Py (W) +8, Q) () (77)

(b = cos 8). Here P, and Q are the Legendre functions of the first

and second kind, respectively. In particular,

0 (1) =% Tn (1) -1 (78)

P] (u) = U, 1'1-1

The boundary conditions, Eqs. (75), allow the constants A° and Bo

to be evaluated. The results are

v 2 . u2
Ay =1+ |0 ) (1- L M7
Yyl 1 -y
u = Us
> 2 (79)
I (YR
B = - [u(1®) (-1 My
el 1 o
u-us

1 up)  follows from

Here Mg = COS eo .

The cone angle & ( = cos”
S %

40 -1 V22 %

(5_81) R R P (80)
du b=y Lol VMZ_u2
S i
s
22
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We now wish to apply this weak crossflow approximation to the
perturbation problem, Eq. (63). Equation (63) contains terms on the
right-hand side that are order (uo/ao) (vo/ao) and (volao)2 relative
to terms on the left-hand side. The terms of order (volao)2 on the
right-hand side are uniformly small compared to like terms retained on
the left-hand side in this weak polar crossflow approximation. This
is not the case, however, for the term of order (uovo/aoz). Specifically,
if we compare the term 2 (uo/ao) (vO/ao) du,/ds on the right-hand side
with the term cots dun/de on the left-hand side, we see that their
ratio varies from a maximum at the shock to zero on the body. The

value of the ratio at the shock is given by

(81)

2_ Yo, ¥ -4
[0 G &) ]e=e B 7 .2 2

© 0 s ()1 () 0 ————, )]

v+ (v+1) M“sin%e

which is not small compared to unity. Nonetheless, we shall ignore the
term 2(uo/a°) (vo/ao) on the right-hand side for the following reasons.
First, this term is relatively important only near the shock. On the
body it is identically zero. Second, although the resulting governing
equation is somewhat inaccurate near the shock, the solution un is still
required to satisfy exactly the boundary conditions given by Eqs. (64).
As we shall see, the results obtained by ignoring this term compared

well with experiment and other more accurate numerical solutions.

Thus, in the weak crossflow limit, Eq. (63) reduces to

23




2
‘ d Un du

> + cote "n+(2-n 2 2
doe 9

2csc2 9) u, =N csc ) Fn (8) (82)

d

The boundary conditions remain unchanged and are given by Eqs. (64, 65).
Equation (82) is formally the nonhomogeneous associated Legendre
equation of order one and degree n. If we note that Q]" (6) is a

*
solution of the homogeneous equation , where

n/2 dn Q
§ = e, - 1o y=cose (83)
i

—

then the method of variation of parameters gives the solution of

(82) as

% %

S S
u, () = n? 0? (8) I L F (e'') cos o'’
Q} 2(e') sine' ",

3
OS

de'
Qn Pt Chene
e qQ (') sins

+Q] (cos o'') do'' + A Q) (o) I

+8 Q1 (o) (84)

The boundary conditions, Eq. (64), allow the constants An and Bn to

be evaluated as

*
The function sine is also a complementary solution for the case
n=1.
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dq,” du

» dam Tk oo n_n
An = [ sins 5 u, = siné Q] o ] K
6-60
s
u
. n
B, = ___hJ
9
6'—'60
s

Equation (65) allows one to determine the ratio of the shock displacement

¥
2
£
¢
k

8_  to the body perturbation o _ .
s nb

The integrations required to evaluate Eq. (84) for u, ()
cannot be carried out in closed form. For this reason it is useful
to consider a further approximation and restrict attention to slender
bodies. In this way, explicit results can be obtained which are quite

useful.

il g TR T R Y W e R
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SECTION 5

HYPERSONIC SMALL DISTURBANCE APPROXIMATION; COMPARISON WITH EXPERIMENT

Here we wish to consider slender bodies for which, B s 8y > 0.
In order to retain the essentially nonlinear character of supersonic-

hypersonic flow, we shall also require M1 to be large so that

K=M sino (87)
is finite. The limit 6 + 0, M > » such that Ke = M]sin 8 is finite
is the hypersonic small disturbance approximation 1imit.

In the hypersonic small disturbance approximation, the solution

for flow past a right circular cone at zero angles of attack and yaw

reduces to (3)
ot = 1 sila [ —-Ke)2+ 1 (—Ks)z] (88)
0 = 2 b Ky " %o

K 2
. b
g 2=t L2 g | (89)
0

<
[l

2 2
K K
3,0 =y L1 +%h k2 (24 () - (D) )] (50)
M.l Ke )

where Ks = M] sin eoS and Kb = M] sin eob . In Egs. (88-90) we have

0 and 9_ for 9 to simplify the notation. We shall
b > Og

follow this practice hereafter. The shock angle B¢ and cone angle 8y,

written eb for o

are related by

O 1/2

&= (7 + L (91)
%

o




E These results allow one to evaluate the function Fn (8) that appears

in Eq. (62). Ignoring the variation of a, across the shock layer in

comparison with the variation of Vg We obtain

w2 W2
s~ %
Fn=esG{1-(————2-K2_ ¥ 1 (92)
s " %
where
G = Sn a02
esyzy-], (93)
2
2 2
(K™ - 1) bR
= (1+ 5=k © (2- ))
kZ(r kT ) () kG2 TP Tk Z

S

Here Ks = M] es and Kb = M] eb.

In this hypersonic small disturbance theory limit, Eq. (82)

becomes
du; 1 du ol n? 4 (
—_—t— = — = F_ (o 94)
e’ o do g2 N g2 n
with boundary conditions
6 =0 ]
s n o 2
w, = =29 | B % 8 )
n 8n S g 2 In

8 2 2 2
du n ] 9 2-(,-1) K
n b b A S (95)
(]4._2.

2
2+(v-1) KS




8 =9

Equation (94) has been integrated explicitly forn =1, 2, 3, 4.
While the integrations are somewhat laborious, there is no particular
impediment to consideration of larger n. The results for the first

four values of n are given below

2 B P 2

8 8 20° +o
3 b b
U, =9 6 {-1+ > +—4 () +
1 s 49 4 2 2 2 2y 1/2
8~ 40 (o." -0y )
g * (652_ bz) i
« In ( ) } (97a)
o +(o? -ebz) L
+A 07 +8, 0
| 1 1
| - O 2 .2 &
| it el e TR . R
8 e 28t 8 56 ¢ (8 ¢ -9,2) 1°
s S b c s b
% 2 2 3/2
. o 2(30° * 20p7y (87 -8y
¥ - 2 2 2\ 1/2
Zeb 1Seb (eS -8y )
t
02 + Zebz % -ebz) e f
S €, & (97b) |
% % !
i
| 2 |
' gt L TR
: y 7z - (5) !




2
4 (36

2 2 32 8

2
+26b) (E -GJ 9

8

IS

(62 ~5,0) 112

o 3
4eb (es

2 (ea—s

2 ebZ) 1/2 8 4

BME g2 B -
b

(8

(
2 ebz) 172 ¥ g 2 5

-4
+ A,

The constants of

29

] +B49

4

integration An and Bn are given by




a3 DD - S
Ay = 2 ( Un n de )e=e (98)
es-n o  dup :
Bp =7 (U *+ 7 )e=e (99)

Having determined the u,, we can compute v_, Wos 3, C., and

Pn
from Eqs. (66), (62), (58), (69), and (96), respectively.

n

Gn /8

s s
We are particularly interested in the shock shape - body shape relation
(en /ens), surfacevpressure coefficient (Cpn), and flow streamsurfaces.
The first two gquantities can be easily measured while the latter quantity
is useful in developing waverider geometries.

Differentiating Eqs. (97) with respect to 6, we obtain expression
for Vs Vos V3o and Vg- Evaluating these expressions at 6 = ec, we can
determine the ratio of the body perturbation to the shock perturbation,

o, /en . The results are

[ ™ S
1, - 1/2
—= =14+ (1-Aa){6[--"2 + : In (n + (n-1) ]
o1 & By ma) T
2 (99a)
oty D
4n 2+(vy-1) KS
(5]
2 (n2+2) -1 (.2.y1/2
6, =G [ -Ma + 2 tan” ( (r%-1)""°) 1]
2 -6 2 172
s 2(n” - 1) (99b)

2

2n 4n n2 n2 2+(y=1) KS2
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“3-9 =g [2-3 4. ¢ —-Ji--—3rlL—T7§ n(n#(n?-1)1/2)71
3, 4 16 32 32 (n°-1)
(99¢)
2
3 6 +n6 5 (fﬂ e 2 -(y=1) K
3 Vi 2 7 2
4 q 4 q n n 2 #y-1) X,
", £ 8. o G gaa at ee
ol et U s RS
S
-1 2 .\ 1/2 801
+ —1——  tan ' ( (n°-1) ) 1+ +— (99d)
21y 1° n°

8 2

4 0t (n2+1 % n2-1 2-(y-1)ﬁKs
T = a2+ (v-1) KSZ

where n is the ratio of the shock angle to the cone angle for the un-

perturbed right circular cone,

n=—=— (100)

and is given by Eq. (91) as a function of Kb' Typical results obtained
from Eqs. (99) are shown in Figure 4 for y = 1.4, Note that the Tin-
earized theory result o /en

s b
increases, the relative distortion of the shock shape decreases. Other

= 0 is obtained for Kb = 0. Also as n

numerical results, not shown here, show that these results are not very
sensitive to changes in y for y in the range of 9/7 to 5/3.

Equations (67) - (69) can be used to evaluate the surface pressure
coefficient. Rewriting these results in the hypersonic small disturbance

theory similarity form,
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we have, on the surface of the body,

0, (v+1) K2+ 2 wlog i
—5 =1+ 5 n(— +— 102
8 (v-1) Kb & 2 2 Kb
> 2 (103)
Cp en Cp 2 4y(KS -1)°(1- A éln)
n _ b 0
[ i =% tgz* YK (25 K% = 1=1) K2 + 2)
b s b b ¥ e Y Y 5
2
Un (%) v K ]
9 =1 2 Ks2
14 =K (1+1n =)
2 Ky

where n and 9n /en are given as functions of Kb by Egs. (91) and (99)
b s

respectively. The radial component u, of the perturbation velocity

is given on the body surface by

u_(8,.)
n \°p 3 1 2 1172
= ( V= 3} {6 [1e] « S~ (Mgl T [a¥(n°<1)'7€) ]
b 4 (n2-1) 172
(104a)
2
a2 (nlep? 2- () K :
2n 203 2+ (v-1) KSZ =}
AR VS L Rt VR iy
2n 2 10
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2 2

() (32 42) , (2 1) _ gl (104b)
30 2ot 6

-1
1 2 . sl/2
5 TR tan (™ =1 ¥75) 4

A IR R s gl KF
8 5@ i bt . ) e,
2n 4n 2+(y-1) K,
5.7 n=2
i 3 B i 2 3
=6 n"-1-"S%—=+—(n-1) (- 3 (104c)
3 1 2 1/2
- 7=(n In (n* (n 1) Y3
16 (n2-1)172
2
6 6 2-(y-1) K
. _n +% . n ;\ (n2+1+(n2_1) 52 i
2n 6n 2+(y-1) K
4.8 2 2 i pnlay
=G [n'-1- & (n® -1) (3n%+2) - L (104d)
15 4n2 i

-P%%*€%)+2mlu (s e U R B

7 5 3
- L2 tan 7' ( (2-1)V2) ) 1- uical
8 2
n--1 2-(v-1) K
- (1 (P ———2%) , n=d
8n 2+ (v-1) Kg
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Typical results for the surface pressure coefficient are shown in Figure 5

for vy = 1.4. These results achieve a hypersonic 1imiting value as Kb >

which agrees well with other known solutions. For example, for n =1,
our result Cp / % takes on the value 4.046 which is to be compared

1 b
with 4.088 obtained by Cheng (8) in a separate analysis. The linearized

limit, Ky + 0, of Eq. (103) yields

s —n—as f‘\b -+ 0 (]05)

This result agrees exactly with the linearized theory result of Mascitti
(9).

Figure 6 shows a comparison of the present theory with the experi-
mental results obtained by Chan (10) for flow past a right circular cone
of half angle 8y = 15° and freestream Mach number M] = 10.4 and various
angles of attack. Provided the angle of attack is small compared to eob "
this flow corresponds to a shock wave whose shape deviates from a circle
(in cross-section) by an amount proportional to cos ¢. Figure 6 compares
results from the present theory for the surface pressure coefficient for
n = 1 with experimental results for a / eob = 050 250 8.

The comparison is quite good, although the error does grow as o / eo
b

increases, particularly near the symmetry lines ( 6 = 0, =).

Figures 7 - 10 compare the present theory for n = 2 with experi-
ments (11) and a purely numerical solution (12) for flow past an elliptic
cone. Pruvided the eccentricity e of the elliptic cone is small, the

cone shape can be approximated by a Fourier expansion
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e

8 (¢) = 6. + ezb cos 2 ¢ + e4b cos 4 ¢ + """ (106)

%
where (see Lee and Rasmussen ( 4 ) ),

2
3 . 107
8 Ll R ‘3%‘ (3-2 sin? em) sin 28, +\f(e4) i

2
- & e -y :
8 vy [1+ 32—( 15-20 sin g ® 8 sm4 O ) +1}1e4)] sin Zem

2
g, * Sl (3-2sif o) +HeH) T sinze

s 0= tan”! -T—z-——-—m
(a%+p¢) 1/2
22 (108)
ex
b"+a

and a tanea and b = taneb are the semiminor and semimajor

axes. Provided e is small, the elliptic cone can be represented

by the first two terms of the expansion. The third Fourier coefficient,

84 is of order e2 and thus is neglected in our perturbation
b
analysis. The experiments of Zakkay and Visich (11) used two different

elliptic ones, each cone being run at two Mach numbers. Thus four

comparisons are possible as shown in Table 1 below.
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TABLE 1: Experimental Conditions in Zakkay and Visich (11).

a = ,2555 a = 2256
Hisi b = .3562 b = .4034
= 6 =
eob L2911 o .2873
Mach 6, = .0453 92 = ,0758
Number b b
6, = .0091 6, = .0245 |
4b '4b !
{
i
3.09 Case 1 Case 2 i
i
6.00 Case 3 Case 4 .m
{
i
f

The results shown in Figures 7 - 10 show that the comparison

- i

between experiment and the present theory is reasonable, although not

perfect. The trends clearly are depicted correctly. The largest differ-
ences between theory and experiment occur near ¢ = 45° . This H
2 and 8y ) may

b b
be important as they give rise to cos 4 ¢ contributions which are a

suggests that second-order terms (e.g. terms of order 8,

maximum at ¢ = 45°. The present theory does not allow us to estimate

the contribution of terms of order 8o 2, although the contribution of the
b

84 term can be computed. If we compare 8y 2
b

and 84 for the two
b b
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models used by Zakkay and Visich, we see that 8y 2 equals 0.23 6y -
b b
This suggests that the 94 contribution is the most important of the
b
two second-order corrections.

Figures 7 - 10 show the effect of including the 8, cOs 4 ¢
b

contribution. That is, the dashed lines in Figures 7 - 10 give

(c. +c¢C 8, cos 2¢ +C 8, cos 4 ¢). In general, inclusion of

Po P2 % Pa b
the 84 cCOS 4 ¢ term improves the agreement between theory and
b

experiment, expecially on the windward generators. However, disagree-
ment between theory and experiment remains near ¢ = 45°. The causes
of this disagreement are not clear although viscous effects, model mis-

alignment, and nonuniform test conditions are possible explanations in

addition to the second-order terms ignored in the present analysis.

44




SECTION 6

STREAMSURFACES AND WAVERIDER GEOMETRIES

The streamsurfaces of the flowfield are surfaces composed of

streamlines which, in turn, are the field lines of the velocity vector.
The streamlines of a given velocity field can be determined from the
solution of

=* ->
dr x ¥ = 0 (109)
where 4; is a vector giving position along the streamline. In spherical

polar coordinates Eq. (109) can be reduced to

dr _ rdé _ rsinedé¢ (110)
u v W

It is convenient in the present analysis to introduce a new polar co-

ordinate @ , defined as

6 - oy (¢)

8= (111)
8 (0)-6,(0

Then 7§ varies from zero on the body to unity at the shock. Now

8, p'! -9

b — s b

(—— + 8 —) d¢ ] (112)
8- 8 - 8y

For geometries which deviate slightly from that of a right circular cone,

8y = eob +17(enb ’ emb) and 8 =eos + ]f(enb, o In this case,

)
b

Eq. (112) reduces to




de = (e -06_ ) do +1}(e g B0, (113)
% % Ny My
and Eq. (110) becomes
r(6.-6_) rsin( (e~9_)38)
ar og 0y o o, 0 e (18)
u v W
with errors of order (8, . %y ) The velocity field is given by
Eqs. (46),
u=u0+z‘en uncosn¢+Zem umsinmd;
b b
V=V, + Zenb Vy €OS N ¢ + Zemb Vi sinm ¢ (115)
W= Ze w_nsinng¢ -Z 9 b
nyon m W, m cos m
Thus, to lowest order, Eqs. (114) becomes
dr Yo =
— =1(8, -8, ) — de +1}(e o 8 (116)
r o o' Y ny m
(117)

dé

Yo sin ( (eo -eob) 9) zenb W n sin n ¢ -Zemb w, M cos m ¢

+'lf(enb 5.

Equation (116) can be integrated to give

(( )[e"° 7 )
r=r.exp 6. -8 — dé
1 0s Ob

M

)

(118)




where r; and 5} are constants of integration and correspond to the
streamline passing through the point ( ri s 6} s 95 ). Integration
of Eq. (117) is impossible, in general. However, for geometries that
can be represented by a single Fourier component in ¢ , a rather
simple result can be obtained, (119)
w_ de

6 -8_) el
0g 0y [ Vo Sin ( (eos-eob)§7

tan ( ng )=t i
e e an(—z—). exp enb n

Using the hypersonic small disturbance theory approximation, the integrals

that appear in Eqs. (118) and (119) can be evaluated approximately.

There results

2 2
Mo % % 2
Y‘i 92 _eb2 (]20)
2
n enb (Fo-un)
ne nés 9 2 912 -eb2 28 2
tan (—) =tan (—) |~— —F5 o (121)
2 2 0, 8" 8y

Here we have rewritten the results in terms of ¢ rather than §. Also,
in carrying out the integration in Eq. (119), we have approximated
(F0 - un) by its value on the body.

Typical results from Eq. (121) are shown in Figure 11-14 for
n=1, 2, 3, 4, respectively. These results give the projection of the
streamiines on the unit sphere. ye refer to these projections as the
"crossflow streamlines". For a given n, the number of crossflow

stagnation points is 2n. One-half of the stagnation points are of the

saddle point variety while the other half are of the improper node type.

a7




M. 8. =1.0
il o
6. = 15°
%
5 = 1.5°
]b
y=1.4
FIGURE 11. CROSSFLOY STREAMLINES, 8y = 84 * 8y cOS 3.
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These crossflow streamiine results can be used to develop a
series of new waverider geometries. That is, since the streamlines
of any inviscid flow can be interpreted as a solid boundary, we can
use these streamlines to generate new 1ifting body shapes. While the
generation of the new 1ifting body shapes will be the subject of a sub-

sequent report, Figure 15 shows sketches of some possible results.
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SECTION 7
CONCLUDING REMARKS

The results obtained should be particularly useful because of
their simplicity and ease of utility. The determination of the forces
acting on a body has been reduced to rather simple formulas. The de-

pendence of the pressure force on the body shape, free-stream conditions,

and ratio of specific heats is explicitly demonstrated. In addition,
the associated streamsurfaces allow new classes of 1ifting bodies to
be developed by means of the waverider notion. In this way, pratical
lifting geometries can be developed which avoid shape corners, wings
of zero thickness, and other unrealistic features.

Comparison of these new geometries and waveriders with experi-
ment remains to be accomplished. The necessary experiments are not
particularly difficult or unusual. However, they are essential both
to verify the theoretical calculations and well as to determine
whether these waveriders give stable, 1ifting flow at off-design con- :

ditions.
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